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An asymptotic method is proposed for solving non-stationary dynamic contact problems in elasticity theory and acoustics for 
the case when the half-thickness of the punch exceeds the layer thickness. The method is demonstrated by solving anti-plane 
non-stationary dynamic contact problems concerning the displacement by a rigid punch of an elastic layer, such problems are 
essentially the acoustic case of problems in elasticity theory. The problems are reduced to solving an integral equation of the 
first kind for the Laplace transforms of the unknown contact stresses. The zero term of the asymptotic solution of the integral 
equation is constructed as the superposition of solutions of the two corresponding Wiener-Hopf integral equations minus the 
solution of the corresponding integral equation over the entire axis [1]. The symbol of the kernel of the integral equation is 
represented in a special form which enables the solution of the Wiener-Hopf integral equation to be reduced to the solution of 
an integral equation of the second kind for the Laplace-Fourier transform of the unknown contact stresses. The solution of integral 
equations of the second ]dnd is constructed by successive approximations. After Laplace inversion of the zero term of the asymptotic 
solution of the integral equation, the asymptotic solution of the problems under consideration is determined. Formulae are 
presented that relate the force acting on the punch to the displacement of the punch. A law of motion is obtained for a massive 
punch on an elastic layer for the case when an initial velocity was communicated to the punch at the initial time. © 2000 Elsevier 
Science Ltd. All rights zeserved. 

1. I N T E G R A L  E Q U A T I O N S  

Contact problems concerning a rigid punch penetrating an acoustic strip reduce to solving an integral 
equation of the first kind: 

J" t, pt'(~, p)k , p d,~=2r~fL(p), Ix l~<l  (1.1) 
- I  

where the unknown function ~L(x,p) is the Laplace transform of the distribution of the contact stresses 
under the punch andfL(p) is a known function related to the law of motion of the punch in an acoustic 
medium. The kernel of the equation has the form 

k(t, p)= [ K(u, p)ei"tdu (1.2) 
F 

where K(u, p) is the symbol of the kernel and, F is an integration contour in the complex plane 
u = cr + ix. Non-stationary dynamic contact problems of elasticity theory concerning the anti-plane 
displacement of an elastic layer by a rigid punch may be reduced to the form (1.1). 

We will consider 'two classical non-stationary dynamic contact problems (henceforth called NSDCPs) 
concerning the anti-plane displacement by a rigid punch of width 2a(Ixl a) of an elastic layer of width 
h: the lower side of the layer (y = 0) is rigidly fixed to a non-deformable base (Problem A); the lower 
side of the elastic layer is stress-free (Problem B). Up to the initial time (t = 0) the layer is at rest. 

Mixed boundary conditions for problems A and B are given by the following formulae (y = h, 
t > 0) [2] 

w(x, It, t)=e(t),  Ixl~<a: wT(x, h, t)=0, a < l x l < ~  (1.3) 

where e(t) is the law of motion of the punch and the prime denotes partial differentiation. 
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The following condition holds at the lower side of the layer (y = 0, t > 0) 

w(x. 0. t)=0, Ixl<oo (problemA) (1.4) 

w((x, 0, t)=0, I x l < ~  (problemB) (1.5) 

where w(x,y, t) is a function representing the displacements of the elastic layer along the Oz, axis, which 
satisfies the equation 

mw= t'-2 32 W /Ot 2 (1.6) 

(A is the Laplacian and c is the velocity of sound in the elastic medium). The function w(x, y, t) and its 
partial derivatives tend to zero as Ix I, lyl ~ oo. 

To reduce problems (1.3)-(1.6) to the solution of an integral equation, we apply integral 
transformations, taking Laplace transformations with respect to time t and Fourier transformations with 
respect to the x coordinate [3] 

w t ( x .  y. p ) = ~  w(X, y, t)e-Ptdt (1.7) 
o 

),l'l'l"(O~. y. p)= ~ wL(x, y, p)eitt~dx (1.8) 

These transformations reduce problems A and B to solving integral equation (1.1) of the first kind with 
kernel (1.2). The symbol of the kernel of the integral equation is given by the formula 

K(u, p) = o -t th(TA-tO) (problem A) (1.9) 

K(u. p) = o -l cth(yA-Io), o = ~u2+ 1 (problem B) (1.10) 

In formulae (1.1), (1.2), (1.9) and (1.10) 

A c h G = ~ T = -  . f t .(p)= e t.(p) 
ap a a 

where eL(p) is the Laplace transform of the function e(t), G is the shear modulus of the elastic layer 
and F is an integration contour in the complex plane u = cr + ix, making an angle -argp with t the 
real axis ('r = 0). To compute the root in (1.10), we take the branch for which (1 = 1. 

The functions K(u, p )  given by formulae (1.9) and (1.10) are even, meromorphic in the complex 
plane u = tr + ix and have there an even number of zeros and poles, whose values may be 
defermined by elementary means. At large values of l ul both functions have the asymptotic 
behaviour 

K(u, p)=lul -t+O(lul-a), lul ~ ,  

and for small u 

;th(TA -I) for problem A 
K(u, p) = A + O(u 2), u --* 0; A = [cth(TA_ j) for problem B 

The functions K(u ,p )  (1.9), (1.10) may be expressed in a special form, as series of exponential functions 
[4]: 

Kiu, I,)=o-'(1-2~.,=1 d,,exp(-b,,ty)/, Reo>0  (1.11) 

d ,= / ( - l ) "+ l  for problem A (1.9), b,=2nyA_ ~ (1.12) 
/-1 - for problem B (1.10) 
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The factor tr -1 on the right-hand side of (1.11) is the symbol of the kernel of the integral equation 
corresponding to t]ae anti-plane NSDCP of the displacement of an elastic half-space by a rigid punch 
[5]. This is easily seen by letting h, ~ ~ ~ in formulae (1.9)-(1.11). In the general case, the symbol of 
the kernel K(u, p) of the integral equation of the NSDCP for an acoustic layer may be expressed in 
special form as a series 

K(u, p) = X ( u ) - 2  ~ q,,(u)exp(-b,,o)K(u), R e o  > 0 (1.13) 
tl=l 

When representation (1.11) is used for K(u, p), the kernel of integral equation (1.2) may be written 
as a series 

k(t, p)=2Ko(t)-4 Y, d,,K o 
n=l 

where Ko(t) is the MacDonald function and the quantity dn is defined by formula (1.12) 

2. A P P R O X I M A T E  S O L U T I O N  OF T H E  I N T E G R A L  E Q U A T I O N  

The zero term of the asymptotic solution of Eq. (1.1) for largep and h < a is conveniently constructed 
as the superposition of the solutions of the following integral equations [1, 2, 6, 7] 

-t 

tpt_?(~, p)k , p d~ = 2nft'(p). - oo < x < 1 (2.2) 

7 tp~(~, p)k(~-~,  p)d~ =2nft'(p) - ~ , , < x < ~  ( 2 . 3 )  

according to the formula 

l (1 +X p ) + t p L ( ~ . X ,  p) L x p) ~pt'(.r, I,) = ~p;[ ---A--, {p=( ~ ,  (2.4) 

The kernels k(t, p) of Eqs (2.1)-(2.3) are identical with (1.2), where the integration contour F is 
deformed in the coraplex plane u = tr + i'r and coincides with the real axis (r = 0, - ~  < tr < w). 

We will make the following change of variables in (2.1) and (2.2) (a plus sign for (2.1) and a minus 
sign for (2.2) 

= A t ' -  l ,  + x = 1, + = AJ ' 

As a result, the two equations (2.1) and (2.2) become Wiener-Hopf  integral equations [1, 7] 

7 tP~(~, lOk(~-.r)d~ =2n fL(p), 0 ~ x < o o  (2.5) 
0 A 

Applying to Eq. (2.3) the change of variables 

we obtain an integral equation of convolution type over the entire axis [8] 

~'j tp~ ({, p)k({ -x)d~ = 2n ft.(p), _ ~ < x < oo 
_~ A 

Constructing a solution of integral equation (2.5) for ~pL+(x, p)  we 
L L ~p_(x, p), since in the case under consideration ~+(x, p)  = ~p~(x, p). 

thereby 

(2.6) 

also determine 
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Following the general scheme for solving Wiener-Hopf integral equations [7, 8] to determine 
@+(x, p), at the first stage of the solution procedure we extend the definition of Eq. (2.5) to the entire 
real axis and then, using the Fourier integral transformation (1.8), we reduce the problem to solving 
the functional equation 

1 fZ,(p) ~_ l_E(u,  P) (2.7) 
K(u, p)~.(u, p ) =  iu A 2g 

which holds in a certain strip "r_ < Im(u) < "r+ of the complex plane u = cr + i% where we have 
introduced the notation 

• +(u, P )=7  g)+(~, p)exp(iu~)d~ 
o 

o o 
E_(u. p)= I e({)exp(iu~)d~, e(x, p)= I q)L(~, p ) k ( { -  x)d{ - oo < x < 0 

(2.8) 

Here, the function ~+(u, p) is regular in the upper half-plane (Ira(u) > "r_, - 1  ~< a'_ ~< 0) and 
E _(u, p) is regular in the lower half-plane (Im(u) < r+, 0 < "r+ ~< 1) and E _(u, p). The functions 
K(u,p) ,  defined by (1.9) and (1.10), are regular at least in the strip [Im(u) l < 1. 

Let us express the function K(u, p) in Eq. (2.7) as a series (1.13), where K(u) is the symbol of the 
kernel of the integral equation of the corresponding NSDCP for the displacement of an elastic half- 
space by a punch [5] 

K(u) = o --I (2.9) 

and d n and b~ are defined by formulae (1.12). 
Substituting series (1.13) for K(u, p) into Eq. (2.7) and factorizing the function K(u) [7], which in 

this case may be done by elementary means, 

K(u) = K+(u)K (u), K+(u) = K_(-u) = (1 - iu) - I /2 

and dividing the resulting equation by K_(u), we obtain a functional equation 

(2.10) 

L 
f ( P ) g ( u ) + 2 ~  ~ M" 1 E_(u, p) K+(u)O+(u, P) - d,, (u, p)+  (2,11) 

A n=l 2re K_(u) 

iuK (u)' 
M"(u, p ) =  K+(u)~+(u, p)exp(-bno ) g(u) = 

The functions g(u) and M ~ (u, p) may be expressed as the sum of two functions, one regular in the 
upper half-plane (Ira(u) > a-_) and the other in the lower half-plane (Ira(u) < ,r+) of the complex plane 
u = ~r + i'r 

g(u) = g+ (u) + g_ (u) (2.12) 

M" (u) = M~ (u) + M~(u) 

This may be done, for example, by using a general theorem [7], whence we obtain 

11 , , j  g+(u)= l~'iuK_(O) g-(u)=~-u "K(u)  K_(O) 

1 ~+'" d~ 
"C < C < T +  

(2.13) 

(2.14) 

M"_(u. p)=M"(u, p)-M~(u, p) (2.15) 
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Substituting expl~'essions (2.12) and (2.13) into (2.11) and collecting functions regular in the upper 
half-plane (Im(u) > "r_) on the left of the equality and functions regular in the lower half-plane 
(Im(u) < "r+) on the right of the same equality, we obtain an equality whose left- and right-hand sides 
in combination define a certain function in the complex plane u = (r + i~'. On the assumption that the 
functions ~+(u,p) and E_(u, p)/K_(,) decrease as l ul ~ o~, it can be shown that the left- and right- 
hand sides of the equality decrease at infinity. Then the function they define decreases as l u I ~ ~. By 
Liouville's theorem [7, 8], such a function must vanish identically in the complex plane u = (r + it. In 
that case, the last equality yields two relationships defining qb+(u, p)  and E_(u, p) 

K+(u)dp.(u, p ) + f  (P)g.(u)-2Y~ d,,M~(u, p ) = 0  
A ,~=1 

(2.16) 

"fl'(p)g_(u)K_(u)+2K_(u)Y. d,,M2(u, p)+E (u, p ) = 0  
A sl=| 

(2.17) 

Determining the required function qb+(u,p) from (2.16) and developing the formula thus obtained, 
we obtain an integral equation of  the second kind for qb+(u, p)  

1 *+(~' P)a; 
dp+(u, p)= fL(p)A K+(u)g+(u) ~--niX+(u) ,~=t ~ d,,r[ N,,(~, p) ~-u (2.18) 

N,, (u. p) = K+(u)exp(-b,~). 

The contour F is situated in the regularity strip of the functional equation "r_ < Im(u) < r+. Under  
those conditions, if u e F, then (2.18) is a singular integral equation of the second kind, and the integral 
on its right-hand side may be understood in the sense of the Cauchy principal value [7]. 

Integral equations similar to (2.18) and approaches to their solution have been considered before 
[7]. Here  we will propose a different method for solving Eq. (2.18), which takes the specific properties 
of its kernel into account. 

The singular integral in (2.18) (u e F), for Nn(~,p)~+(~,p) e Lq(F) (1 < q < oo), is a bounded linear 
mapping of the function space Lq(p) onto itself for any q(1 < q < ~) [10]. A solution of Eq. (2.18) may 
therefore be sough1: by the method of successive approximations. 

When estimating the integral operator in (2.18) as l u ] ~ ~, which is necessary in order to determine 
the structure of the method of successive approximations, the estimate K÷(u) = O(lul-a/2(lul 
is taken into account on the assumption that ~+(u) = O( [u 1-1/2( ]u] ~ ~), and subsequently the method 
of steepest descent [11] is used to investigate the operator, yielding the following inequality ( l u I ~ ~) 

t ~ N,,(~. p) < !c°(P)lexp(-b, ,)  (2.19) 
2-'~ r ~ - .  lul 

where c0(p) is a constant, which depends onp  and the integration contour F is situated in the regularity 
strip -r_ < Im(u) < r+ and may coincide with the real axis. The singular point { = u is circumvented 
from below if u u e F. 

To solve integral equation (2.18) by successive approximations, we propose the following iterative 

.... +l. fL(p)  g+(u) ~ _ Y~ d,, S N,,(~, p) (2.20) w+ ~u, 17)= A K+(u) rciK+(u)n=l r ~ - u  

scheme 

m = 0 ,  1,2 . . . .  

in which the zeroth approximation ~°(u,  p)  is taken to be the known function on the right of 
Eq. (2.20) 

gP°+( u, P)= ft .(p) g+(u) (2.21) 
A K+(u) 

which, in turn, is the Laplace-Fourier transform of the solution of the corresponding NSDCP of the 
displacement of an elastic half-space by a punch [5]. 
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When implementing the iterative process (2.20) of the method of successive approximations, the 
computed quadratures are generally written as special functions and the structure of the process is 
difficult to determine. 

The structure of the iterative process is determined using an asymptotic analysis of the integral 
operator in (2.20). 

For rn = 0 Eq. (2.20) has the special form 

@+(,,. p)=q)0+(,,, p)+Aq~O(u, p) (2.22) 

1 
A*°+( u, P)= K+(u),,~ld,,, I N,,(41 P )*0+(41" p) d41 

F I ' 41 - -  lg 

Using inequality (2.19) in this case, we obtain the following estimate for zX~°(u,p) as lul ~ 

i Aq)0(u. p ) l~  < Ic=(p___))l ~ d,,, exp(-b,,~ ) (2.23) 17,11'2 ,,=l 

The function +l+(u, p)  contains an infinite number of terms, each involving (in the asymptotic sense) 
an exponential term exp(-bnl)  (/'l 1 = 1,  2 ,  . . . ) .  These terms will be refined in subsequent steps of the 
successive-approximation process. 

When m = 1, after substituting + l ( u , p )  from (2.22) into Eq. (2.20), we get 

~2+(u, p )=~/Cu ,  p)+A~l+(u, p) (2.24) 

l ~ 

,,) = < o z  <, × 

*°(4" P) a4, xJ" exp(-b"2(:;(42))d42J" N,,,(4,. P) "~([~2" 
F 2 42  -- / ' /  F I 

One obtains the following estimate for q~l(u, p)  as l ul + 

IAq)l.(u. i,)1 ~ Ic2(P)----~l ~. ~. exp(-b,,, ) (2.25) 
I u I I / 2 +n2 

n2=l n I =1 

indicating that one must add to the infinite sum of terms in ~ l (u ,  p)  the double sum of terms with 
exponentials exp(-bnl -bn2 ) whose minimum exponent is (b,, + b n ) = b 2, since bn. + bn2 = bnl +n . 
and inf(nl + n2) = 2. Hence it follows that the double sum ~l (u ,  ~) does not con{ain a term witl~ 
the exponential exp( -b l )  and, naturally, does not introduce a correction to the term in qbl+(u, p) 
containing an exponential with the same exponent -b l .  All other terms of ~l+(u, p)  with exponentials 
exp(-b2), exp(-b~) . . . .  receive corrections from the double sum A@a+(u, p). 

Thus, ~2(u, p)  contains only one term (the first) with the exponential exp( -b l )  in the infinite sum, 
that does not receive a correction from the subsequent successive approximations. The function 
~a+(u, p), the second approximation to qb+(u, p), contains two terms with exponentials exp(-b l )  and 
exp(-b2) that experience no changes in subsequent successive approximations. 

For arbitrary m, the integration scheme (2.20) may be written in the form 

(p'~'+J(tt, p)--~+'fu,  p ) + k ¢ ' " ( , ,  p), m=0 ,  1, 2 .... (2.26) 

I ~ d,,,,,., ~ ... ~ et ...... , I exp(-l,.,+, (;,,,.l )) d;,,+l x 
A~{~'(u, p )=  (ni),,,+tK+(,) ...... ~=l ..... =l ,,,=1 r,,,., ~,,,+l - u  

x J" exp(-/,,,,, (4, , ) )d4, ,  ' ... ~ K+(4,)(:I:)°(4,, P) exp(-l,,, (;,))d4, 
r,,, 4,, ,  - ~, , ,+,  r, ~ ,  - 42  

I,,i(u)=b,,13(u), 13(u)=(u 2+1) i/2 

where F]. are integration contours in the regularity strip -r_ < Im(u) < "r+ (j = 1, 2, . . . ,  m + 1) and 
q~°+(u,p) is given by formula (2.21). 
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The estimate 

IA(1)'f,t. p)l ~ I-c"t(P)l ~ ~ ,~ exp(-b,, +,, + ). lul-o<, 
U 1 / 2  z . ,  / I 2 . . . n m + l  

tr i l l+ I = tit/I =1 It = l  

(2.27) 

shows that the infinite sum representing (I)~+I(u, p) begins with m + 1 terms that experience no 
changes in subsequent iterations, since only the first term of the (m + 1)-fold sum in qb2(u, p) 
with least exponent in the exponential exp(-bm+l) (inf(nl + n2 + ... + nm+l) = m + 1 and 
bnl + bn2 + ... + bnm+ 1 = bnl+n 2 +... + nm+l) corrects the (m + 1)th term contained in qb~'(u, p), as 
well as all subsequent terms in which ttle exponents of the exponentials have larger indices: 
bin+l, bin+3, . . . .  The first m + 1 terms in ~ '+ l (u ,  p) constitute a mathematical description of m + 1 
elastic waves reflected from the lower side of the layer through the layer to the bottom of the punch; 
to determine these terms, one has to perform m iterations in (2.20). 

It is important !j) note that the approximate solutions ~J+(u,p) (j  = 1, 2 . . . . .  m + 1) obtained for 
, 0 integral equation (z,. 18) are of the same order of accuracy with respect to u as ~ .  (u,p). This is confirmed 

by estimates (2.13), (2.25) and (2.27). 
To construct an approximate solution for the NSDCP under consideration, with one wave reflected 

from the lower side of the layer through the layer to the bottom of the punch, one has to take the solution 
~l(u, p) (2.22) of integral equation (2.18). Substituting (2.21) into (2.22) and using the explicit 
expressions (2.10) for K+_(u), we obtain 

I {I @+(it, p) = (l) +(u, p)+ ~ d n expt-b . )@°(u,p)+ 
#l =: I 

-t-~ E d,,b,,ttJ°(u,P)~ Ki(v't(~))exp(iu~)d~, u,, (x)= +x-  (2.28) 

where Ki(u) is the MacDonald function. 
Taking inverse Fourier transformations of (2.21) and (2.28), we find the zeroth and first approximations 

of the solution of F,q. (2.5) 

+;"+( ,+. v )  = I ¢'7-'(,,.pw"t+d,,. , , , = 0 . 1 . 2  . . . .  
A R  

(2.29) 

Implementation of (2.29) yields the following formulae [3, 4, 12] 

tp'~# (x, p)= .f.t.}p) ( e r f~x  + exp(-x) / 
A t  

tp~t.Ca., p) = oz., tp+ (x. pl+ ~ d,, exp(-b,,)cp°C(u,p)+ 
It=l 

(2.30) 

] ,~ .i / h .  

+ - -  3". d,,b,, i K'(b'tv({))(P°t'(x-btt{'P) d~, u(x)=~J I+x2 (2.31) 
2re ,,=l o v(~) 

The zeroth approximation q~0L(x, p) does not contain elastic waves reflected from the lower side of 
the layer to the bottom of the punch (corresponding to the solution of the NSDCP for an elastic half- 
plane), as indicated by the superscript zero; the first approximation ~IL(x,p), contains one elastic wave 
reflected from the lower side of the layer, as indicated by the superscript 1. 

Integral equation (2.6) for the NSDCP under consideration may be solved exactly using the Fourier 
integral transformation (1.8); the solution is 

tp~(.r,l ) = I -2z~ g,, exp(-b,,) , 
#t=l  

- 1 for problem A 
g" = (-1) "+m for problem B (2.32) 

To solve Eq. (2.6), one can use the method of successive approximations proposed for solving integral 
equation (2.18). To that end, the solution of Eq. (2.6) is reduced by the use of Fourier integral 
transformation (1.8) to the solution of the functional equation 
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K(u, p)O~.(u, p) = 2n r,,st-p~ 8(u) (2.33) 
A 

where ~(u) is the Dirac delta-function. The functions K(u, p) for problems A and B are expressed in 
the special form (1.11) and substituted into (2.33); after dividing by K(u), we obtain 

fL(p) 6(u) 
qb (u,p) = 2n +2 Y. d,, exp(-b,,(~)O~.(u,p) 

A K(u) ,=1 

The iterative process is organized in a scheme analogous to (2,20) 

O'"+'(u,p)=2n fL(p) 8(u---)-) t -2~  dnexp(-b,,c~)O~(u, p), m=0,1.2 .... (2.34) 
A K(u) ,,=1 

o ft.(p) ~(u) 
@~ (u, p)  = 2n' 

A K(u) 

which may be written as a new scheme analogous to (2.26) 

t l ) t t l  + l t "11 tu.p)=~.~(u, p ) + A ~ ( u ,  p), m=0,1,2 .... 

AOZ(u,p)=2 ~ d,,,,,+ 2 ~ d,,,,...2 ~ d,,exp(-b,,t+,z...+,,,,,+,)O°(u,p ) 
I I I l l +  I = I I t  m = ] I t  I = [ 

(2.35) 

Repeating the arguments described for implementing interative scheme (2.26), it is easy to establish, 
on the basis of (2.35), that for m = 0 scheme (2.34) gives 

.ft.(p) ( 
O.~(n,p) = 2n AK(u) I + 2,,=1 ~" d,, exp(-b,,cy))8(u) (2.36) 

Using the properties of the delta-function in Eq. (2.36) and taking inverse Fourier transformations, 
we obtain the solution 

~P~(x,I,)=f~AP)II+2,~=, d,, exp(-b,,) / (2.37) 

in which the zeroth and first term are identical with the exact solution (2.32), while the function 
¢pm+a'L(x,p) thus obtained will have its first m + 2 terms identical with the exact solution (2.32). 

The zeroth term of the asymptotic solution of integral equation (1.1), containing the description of 
one wave (the first) reflected from the lower side through the layer to the bottom of the punch, is 
constructed by the formula 

i t f l+x  "~+_lL/l-x, "~ i t (x  "~ cpll'(X,l.')=q)+~-"~,p) tp_ ~--'~ p)-Cp. ~--~,p) (2.38) 

where the superscript indicates the number of reflected waves contained in the solution. The function 
q~l+L(x,p) in (2.38) is given by formula (2.31), and the function q~L(x,p) by formula (2.37). 

3. SOLUTION OF THE NSDCPS UNDER CONSIDERATION 

In the previous section we determined an approximate solution for the integral equation of the NSDCP 
- the function q~lL(x, p) (2.38), which is the Laplace transform of the unknown contact stresses. To 
determine the solution of the NSDCPs formulated in Section 1, we need only evaluate the inverse 
Laplace transformation of qolL(x, p) (2.38). This gives a solution of the problem in the from 

t) (3.1) 



Asymptotic method for solving non-stationary dynamic contact problems 395 

where 

, ,  

- .,=, o - ( 0 , .  2 
- f ~ , , v - ( O  

dx (3.2) 

_oF d' )] 
(3.3) 

(3.4) 

Here 

• [.q/~_~,,t 2 2 a ( l+x )  l h t , = m a x { 1 3 . - C / ~ + l , x - ~ , ~ }  / ~ . = m m ~  - -  , - - -  , 1 3 . = 2 n - -  

l , 

and for the function ~°(x, t) outsider the sum in (3.2), 13, = 0; G is the shear modulus. 
In the simplest case, when s(t) = woH(t) ,  where H ( t )  is the Heaviside function, the solution of the 

NSDCP has the simplest form (3.1), where 

c [ ru4~. +8(t), ~(. . t)= Gw°c 2, 

and ~ ( x ,  t) is evaluated by formula (3.2) 
Formulae (3.1)-(3.5) enable one to analyse the nature of the wave field of the stresses beneath the 

punch, including that formed in the period during which the first wave reflected from the lower side 
of the layer reaches the bottom of the punch• If 0 < t < [31 (before the arrival of a reflected wave), the 
field of contact stresses is identical with the field of contact stresses in the problem of a punch displacing 
an elastic half-space [5]. If 131 < t, < 132, the wave of stresses reflected from the lower side of the layer 
and reaching the bottom of the punch at time t = 13a generates new waves of contact stresses, which 
spread from the edges of the punch as from sources with the velocity of sound c. 

There are no singularities on the fronts of these waves at [31 < t < 132, as for 0 < t < 131; but the 
constant singularities of the stresses at the punch edges appear in the solution• 

4. T H E  M A G N I T U D E  OF THE F O R C E  A P P L I E D  TO THE P U N C H  

The magnitude of ti~e force applied to the punch and causing the punch to move according to the law 
e(t) is evaluated by the formula 

I 

T(t)  = a ~ q0(x,t)dr (4.1) 
- I  

In the case under consideration, the Laplace transform of this force may be found using the formula 

I 
7" i t ' (p)  = a ~ <pit'(x, p)cLr (4.2) 

- I  

(the function ~olL(x, p) is given by formula (2.38)). In this case formula (4.2) may be written in the 
form 

I L  I L  T I t ' ( p ) =  Tl+t(p)+ T ' ( p ) -  T" (p)  

I I 

" I  " " .. = tp~ (.r. p )dx  ~ (x, p)d.r. 
- I  - I  

(4.3) 
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In our  case, we have (T+IL(p) --- Tl_e(p) 

T+11. (p) = ol T.~ "(0, p) + ~ d,, exp(-b,, )T2 t" (0, p) +. 
#l=l 

2 ,,,,,,t,, Ki(b,,v(~))TO,.(O_b,,{,p)d~ ' 0 = 2 2ap 
+ -  <1,.I,,. S . . . . .  rc ,,=1 o v (~) A c 

"ft'(P)[( l ~ ] 
+ exp(-u)  + u r>. , , ) :<,  , Lt" ~]erf'wtuu+ 

s 

A L .= i  

Taking an inverse Laplace  t r ans fo rmat ion  in (4.3), we obtain  ((Tl+(t) = TX_(t)) 

Ti(t) = 2T)(t)-T~(t) 

(4.4) 

(4.5) 

where  

r'+(,l = r'?{2alc.,)+ Z <4,r<+'(2a/<'.t-~,,,)+ 
tt=] 

xT~ ~ (2a / c - [$,,~, t - x) d'c 

13. = 2 . - .  = t~, = 13,p (¢)  
c oh 

T; (u.tl= G e(t)+u(E'(t)+~.(O))- Sl(u , t )+  S2(u.t) 
. ~ dg 

'f e( t  - z)  s . , , . , ) - - ,  

.4-., a s~(..t)] (4.6) / rt d t  

In the s implest  case, when  e(t) = w0H(t), we have instead of (4.6) 

T + (tt. t l  = G % l  H ( t ) -  . ,476-.) J I arctg ~/U77 - u) + + uS(/') 
ft .  rc(I + u(t - ,0) 

2a l- ~, 1 
72.~t) = - -  c . w , , ] 2  Z a,,8(t - D,,) + 8(t~ 

J c k ,t=l 

Note  that,  as before ,  the infinite sum in (4.5) contains only one first ref lected wave,  described by the 
first t e rm of  the sum; the others  are computed  formally and have to be corrected.  Analysis o f  the formula  
shows that  the te rms  in (4.5) outside the sum const i tute  the force T(t) of  the cor responding  N S D C P  
for  a half-space (0 < t < ~31) [9]. The  first t e rm in (4.5) in the infinite sum cor responds  to an algebraic 
inc rement  to the force  at [31< t, < [32, due to the arrival of  the first wave of  stresses ref lected f rom the 
lower side of  the layer. 

5. T H E  M O T I O N  O F  T H E  P U N C H  

Let  us de te rmine  the law of  mo t ion  of  the punch  e(t), knowing its l inear  mass  m and the velocity 
k(0) = v0 at the initial instant  of  t ime (t = 0). In  that  case the equa t ion  of  mo t ion  of  the punch  will be  
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m~(t) = -T(t) (5.1) 

with initial conditions k(0) = v0, e(0) = e0 where e0 is the initial displacement of the punch, up to the 
time t = 0. The elastic force T(t) resisting the motion of the punch, due to the contact stresses between 
the punch and the elastic layer, will be considered to be equal to the magnitude Tl(t) for the initial 
time interval 0 < t < 4he -a, as defined by formula (4.5). 

Using the methods of the operational calculus [13] to solve Eq. (5.1), we obtain the following 
expression for the transform eL(p) of the unknown function e(p) 

"~ I ,,,L/,'e ( p ) -  c(o)J = -T~1(p )  (5.2) 

where T1L(p) is given by formula (4.3).  In the case under consideration 

~:Z.(p) = s(0)p + c(0) (5.3) 
mp 2 + GN(p) 

N(p) = 2m~(0, p) + 2 ~ d, exp(-b,,)m°+(O,p)-2 ~ d,, exp(-b,,)0 + 
n=l  tl=l 

+--2 ~ d,,b,, ,,m,h)S K)(b,,u (~))m°(O - b,,~, p) d~ - 0 (5.4) 
n ,,=, 0 v(D 

nt~ (0, p) = (0 + ~ )  e]'l'-~r0 + y ~ -  exp(-0) + O 

To obtain an approximate solution e(t), we replace all functions in (5.3) and (5.4) by their asymptotic 
forms (p, 0 --~ oo), 

,n°(O, p) = (0 + ~ - exp(-O)/(2x/-~) + 0(0 -3/2 exp(-O)), 0 ---¢ oo 

K t (u) = exp(-u) I + O , u ---) 

and use the method of steepest descent [11] to evaluate the integral in (5.4). We then obtain the 
approximate formula 

[;/,(p) = e(0)p + c(0) + e(0)p + ~:(0) Q(p), 
M(p) M2(p) 

M(p) =mp 2 + OG + G 

For small t (0 < t, < 132) we obtain 

e(t) = e(0)(/?(t) +/)(t)) + e(0)(E(t) + D(t)) 

where 
t 

D(t) = S "cE(x)F(t - "c)dx 
~n 

F(r) := L ,,=, ~ d"(4"c°~(t-~n)+ 3H(t-~")-64t- 

/ co-~ sin tot, to= ~ 0  -82  

=aG/(cm), f)o =G/m, x o =2a/c, ~n =2nh/c 

( 5 . 5 )  

(5.6) 

(5.7) 
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Formula (5.6) for e(t) (e(0) = 0) shows that, depending on the sign of the quantity A = a2p - m 
(where p is the density of the layer material), the law of motion of the punch will be a decaying motion 
if A ~ 0 and an oscillatory-attenuating motion if A < 0. The first and second terms in the second formula 
of (5.7) under the summation sign (n = 1) indicate, in the case of Problem A, that the wave of stresses 
reflected from the lower (rigidly fixed)side of the layer, reaching the bottom of the punch, acts on the 
punch in a direction opposite to that of its preliminary motion (dl = 1), while in the case of Problem 
B that wave imparts to the punch an additional impulse in the direction of its original displacement 
(d, = - 1 ) .  

The formulae obtained here hold up to the time 2a/c required for an elastic wave to proceed from 
one edge of the punch to the other. They are meaningful when h < a, when at least one elastic wave 
reflected from the lower side of the layer succeeds in reaching the bottom of the punch. 
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